

PRODUCT/CATEGORY	Technology	Description	Advantages	Disadvantages
I Genome/Exome	Next Generation Sequencing (NGS)	 Process that determines the order of nucleotides, building blocks of DNA in an individual's genetic code. Whole Genome Sequencing (WGS) sequences both the entire protein coding and the non-coding regions of the genome. Whole Exome Sequencing (WES) sequences all the protein coding regions in the genome (exons). 	 Cost-effective solution for the diagnosis of complex and unsolved cases Helps determine whether a couple is at risk of having a child with a genetic condition as well as prognostic information regarding the disease Help determine if a disease-causing variant is inherited and helping to prevent any further genetic disorder Faster turnaround time for high sample volumes Higher sensitivity to detect low-frequency variants 	 Expensive equipment Bioinformatic processing of data Less cost-effective for sequencing low numbers of targets (1-20 targets) Time-consuming for sequencing low number of targets (1-20 targets)
2 Chromosomal Microarray (CMA)	Chromosomal Microarray (CMA)	 Molecular cytogenetic method for the analysis of copy number variations (CNVs) Gold standard for the detection of CNVs 	 Detects structural aberrations by providing information on thousands of targets in a single experiement detecting copy number changes at the gene, chromosome and genome level. Provides comprehensive genetic testing for the most commom chromosomal conditions as well as large number of severe genetic conditions not detected by traditional chromosome analysis. 	• CMA cannot detect rearrangements (i.e balanced translocations, small deletions, sequence variants, mosaicisms etc)
8 Precision Panels	Next Generation Sequencing (NGS)	 Testing multiple genes associated with a particular disorder, thus, creating genetic panels based on WGS. Panels include all relevant pathogenic and likely pathogenic variants within coding regions, regulatory sequences, and deep intronic regions described in Human Gene Mutation Database (HGMD). 	 Allow the utilization of strong diagnostic hypothesis to reduce the cost while benefitting from the power and upside of WGS Fast, thorough, and cost-effective diagnosis for patients with distinctive clinical features Option of creating customed precision panels based on genetic demand of the patient 	 Expensive equipment Bioinformatic processing of data Less cost-effective for sequencing low numbers of targets (1-20 targets) Time-consuming for sequencing low number of targets (1-20 targets)
4 Gene Analysis	Multiplex ligation-dependent probe amplification (MLPA)	 Multiplex PCR method that detects abnormal copy numbers of up to 50 different genomic DNA or RNA sequences associated with a disease MLPA can also detect DNA methylation changes (MS-MLPA) 	 Most reliable and cost-effective method to detect known deletion/duplications and specific CNVs. Is able to discern between point mutations, as well as duplication/deletion of genes Small alterations to the MLPA protocol can allow for a variety of applications 	 Is not able to detect large CNVs, sequence variants or mosaicisms MLPA is very sensitive to impurities
	Expansion (EXP)	 Gold standard assessment for many repeat expansion diseases PCR-based screening of repeat lengths 	 Run test with fewer requirements (no controls, no size thresholds) 	 Limited to only repeat expansions Will eventually be substituted by WES and WGS
	NGS	"	"	"
	Sanger/MiniSeq sequencing (SANG)	• Also known as "chain termination methos" is a method for determining nucleotide sequences in DNA	 Fast, cost-effective sequencing for low number of targets (1-20 targets) Verification sequencing for site-directed mutagenesis 	 Low sensitivity Low discovery power Not as cost-effective for high number of targets (>20 targets) Low scalability due to increasing sample input requirements